Micropatterned Multicolor Dynamically Adhesive Substrates to Control Cell Adhesion and Multicellular Organization
نویسندگان
چکیده
We present a novel technique to examine cell-cell interactions and directed cell migration using micropatterned substrates of three distinct regions: an adhesive region, a nonadhesive region, and a dynamically adhesive region switched by addition of a soluble factor to the medium. Combining microcontact printing with avidin-biotin capture chemistry, we pattern nonadhesive regions of avidin that become adhesive through the capture of biotinylated fibronectin. Our strategy overcomes several limitations of current two-color dynamically adhesive substrates by incorporating a third, permanently nonadhesive region. Having three spatially and functionally distinct regions allows for the realization of more complex configurations of cellular cocultures as well as intricate interface geometries between two cell populations for diverse heterotypic cell-cell interaction studies. We can now achieve spatial control over the path and direction of migration in addition to temporal control of the onset of migration, enabling studies that better recapitulate coordinated multicellular migration and organization in vitro. We confirm that cellular behavior is unaltered on captured biotinylated fibronectin as compared to printed fibronectin by examining the cells' ability to spread, form adhesions, and migrate. We demonstrate the versatility of this approach in studies of migration and cellular cocultures, and further highlight its utility by probing Notch-Delta juxtacrine signaling at a patterned interface.
منابع مشابه
Micropatterned dynamically adhesive substrates for cell migration.
We present a novel approach to examine cell migration using dynamically adhesive substrates consisting of three spatially and functionally distinct regions: the first is permanently nonadhesive to cells, the second is permanently adhesive, and the final region is electrochemically switched from nonadhesive to adhesive. We applied a double microcontact printing approach to pattern gold surfaces ...
متن کاملBiomimetic wet adhesion of viscoelastic liquid films anchored on micropatterned elastic substrates.
Inspired by the natural adhesives in the toe pads of arthropods and some other animals, we explore the effectiveness and peel failure of a thin viscoelastic liquid film anchored on a micropatterned elastic surface. In particular, we focus on the role of the substrate pattern in adhesion energy of the liquid layer and in allowing its clean separation without cohesive failure. Peel tests on the m...
متن کاملGeometric control of cell life and death.
Human and bovine capillary endothelial cells were switched from growth to apoptosis by using micropatterned substrates that contained extracellular matrix-coated adhesive islands of decreasing size to progressively restrict cell extension. Cell spreading also was varied while maintaining the total cell-matrix contact area constant by changing the spacing between multiple focal adhesion-sized is...
متن کاملMicropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion.
The ability to reversibly control the interactions between the extracellular matrix (ECM) and cell surface receptors such as integrins would allow one to investigate reciprocal signaling circuits between cells and their surrounding environment. Engineering microstructured culture substrates functionalized with switchable molecules remains the most adopted strategy to manipulate surface adhesive...
متن کاملCell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly.
Mechanical interactions between a cell and its environment regulate migration, contractility, gene expression, and cell fate. We integrated micropatterned substrates to engineer adhesive area and a hydrodynamic assay to analyze fibroblast adhesion strengthening on fibronectin. Independently of cell spreading, integrin binding and focal adhesion assembly resulted in rapid sevenfold increases in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 30 شماره
صفحات -
تاریخ انتشار 2014